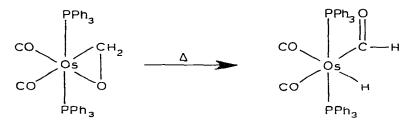
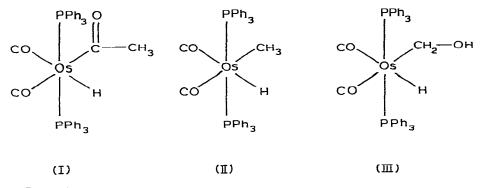
## Journal of Organometallic Chemistry, 198 (1980) C7–C10 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

## **Preliminary communication**

# FURTHER STABLE MODELS FOR CATALYTIC INTERMEDIATES. cis-HYDRIDO(ACETYL)-, cis-HYDRIDO(METHYL)-, AND cis-HYDRIDO(HYDROXYMETHYL)-OSMIUM(II) COMPLEXES

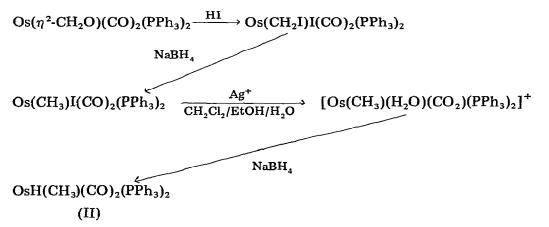

#### C.E.L. HEADFORD and W.R. ROPER\*

Department of Chemistry, University of Auckland, Auckland (New Zealand) (Received July 8th, 1980)


### Summary

The synthesis and characterisation of the molecules cis-OsH(CH<sub>3</sub>CO)(CO)<sub>2</sub>-(PPh<sub>3</sub>)<sub>2</sub>, cis-OsH(CH<sub>3</sub>)(CO)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> and cis-OsH(CH<sub>2</sub>OH)(CO)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>, each of which models an intermediate postulated to occur in one of several metalcatalysed processes, are described.

Transition metal complexes which have as a pair of adjacent ligands, a hydride and a carbon-bound ligand (alkyl, substituted alkyl, or acyl), are frequently discussed catalytic intermediates, but the examples of this type which have been thoroughly characterised are few in number [1]. This is because of the ease with which most of these compounds undergo reductive-elimination reactions (this reactivity is also the key to the catalytic effectiveness of these molecules), either by intramolecular [2] or intermolecular [1] mechanisms. We have recently described an osmium(II) complex with adjacent hydride and formyl ligands which arose from rearrangement of a *dihapto*-formaldehyde complex,  $Os(\eta^2-CH_2O)(CO)_2(PPh_3)_2$  [3].




Both of the above compounds have relevance as models for intermediates involved in carbon monoxide hydrogenation. In an extension of this work we now describe three further molecules with a *cis*-arrangement of hydride and carbon-bound ligand. These are *cis*-hydrido(acetyl)dicarbonylbis(triphenylphosphine)osmium(II) (compound I); *cis*-hydrido(methyl)dicarbonylbis(triphenylphosphine)osmium(II) (compound II); *cis*-hydrido(hydroxymethyl)dicarbonylbis(triphenylphosphine)osmium(II) (compound III).



I results from the reaction of  $Os(CO)_2(PPh_3)_3$  [4] with excess acetaldehyde in benzene solution under a tungsten-halogen lamp. The reaction occurs more slowly than with formaldehyde and no intermediate  $\eta^2$ -aldehyde complex is apparent as in the case with formaldehyde, the reaction instead proceeding directly to I. IR and <sup>1</sup>H NMR data for compounds I, II and III are presented in Table 1. Heating I in toluene under reflux for 1.5 hours leads to the formation of an intractable mixture which, nonetheless, contains significant amounts of  $Os(CO)_3(PPh_3)_2$  (by IR spectrum) suggesting that some reductive elimination of methane has occurred. Thus I models the intermediates involved in the decarbonylation of aldehydes by complexes such as RhCl(PPh\_3)\_3 [5]. Other examples of *cis*-hydrido(acyl) compounds are confined to several tungsten compounds e.g., WH(CH\_3CO)( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>)<sub>2</sub> [6], a partially characterised and unstable iridium compound IrH(COEt)Cl(CO)(PPh\_3)\_2 [7] and several compounds in which the acyl function is part of a chelating ligand [8].

II results from the following reaction sequence [9].



II is a phosphine-substituted derivative of the very unstable  $OsH(CH_3)(CO)_4$ . Studies by Norton [1] have demonstrated that the instability of  $OsH(CH_3)$ -(CO)<sub>4</sub> is a consequence of the availability of a facile dinuclear elimination TABLE 1

IR<sup>a</sup> AND <sup>1</sup>H NMR DATA FOR OSMIUM HYDRIDES

| Compound <sup>b</sup>                                                         | $\nu(CO) \ (cm^{-1})$       | $\nu$ (Os-H) (cm <sup>-1</sup> | ) Chemical shift (7) <sup>C</sup>                                                                                                  |
|-------------------------------------------------------------------------------|-----------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| OsH(CH <sub>3</sub> CO)(CO) <sub>2</sub> (PPh <sub>3</sub> ) <sub>2</sub> I   | 2025, 1975<br>1585 (acetyl) | 1907                           | 15.08, t, 1H, Os-H, $^{2}J(H-P) = 20.5$ Hz<br>8.87, s, 3H, CH <sub>3</sub> CO                                                      |
| OsH(CH <sub>3</sub> )(CO) <sub>2</sub> (PPh <sub>3</sub> ) <sub>2</sub> II    | 2005, 1958                  | 1890ms                         | 16.72, t, 1H, Os-H, ${}^{2}J(H-P) = 23.5$ Hz<br>10.68, dt, 3H,CH <sub>3</sub> , ${}^{3}J(H-P) = 8.0$ Hz<br>${}^{3}J(H-H) = 2.5$ Hz |
| OsH(CH <sub>2</sub> OH)(CO) <sub>2</sub> (PPh <sub>3</sub> ) <sub>2</sub> III | 2020, 1965                  | 1910                           | 16.48, t, 1H, Os-H, ${}^{2}J(H-P) = 21.2$ Hz<br>8.43, s, 1H, -OH<br>6.07, t, 2H, -CH <sub>2</sub> -OH, ${}^{3}J(H-P) = 9.0$ Hz     |

<sup>a</sup> Measured as Nujol mulls; all bands strong unless indicated otherwise. <sup>b</sup> Satisfactory elemental analyses obtained for all compounds. <sup>c</sup> In  $CDCl_3$  solution.

mechanism. Such a process can presumably be blocked by the two bulky triphenylphosphine ligands in II. II is an air-stable solid with m.p. 173–177°C.

Whereas an excess of HX (X = Cl, Br, I) with  $Os(\eta^2 - CH_2O)(CO)_2(PPh_3)_2$ leads to the halomethyl compounds  $O_{s}(CH_{2}X)X(CO)_{2}(PPh_{3})_{2}$  as described above, one equivalent of acid leads to formation of the intermediate hydroxymethyl compounds. Thus  $Os(CH_2OH)Cl(CO)_2(PPh_3)_2$  results from  $Os(\eta^2-CH_2O)$ - $(CO)_2(PPh_3)_2$  with one equivalent of HCl. Reduction of the hydroxymethyl ligand to a methyl group using NaBH<sub>4</sub> has been demonstrated by Graham for the rhenium compound Re(CH<sub>2</sub>OH)(CO)(NO)( $\eta^{5}$ -C<sub>5</sub>H<sub>5</sub>) [10]. Reaction of  $Os(CH_2OH)Cl(CO)_2(PPh_3)_2$  with  $NaBH_4$  in  $CH_2Cl_2$ -EtOH, however, results in hydride substitution at osmium yielding the novel hydrido(hydroxymethyl) complex OsH(CH<sub>2</sub>OH)(CO)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (compound III). The IR spectrum shows  $\nu(OH)$  as a sharp band of medium intensity at 3560 cm<sup>-1</sup> which is shifted to 2630 cm<sup>-1</sup> (m, sharp) in the  $D_2O$ -exchanged sample. This compound provides a good example not only of the elusive hydroxymethyl ligand, previously reported only for  $\text{Re}(\text{CH}_2\text{OH})(\text{CO})(\text{NO})(\eta^5 - C_5\text{H}_5)$  [10,11], but in addition, with the adjacent hydride ligand III precisely models the sort of intermediate often postulated [12] in the last step of the reduction of CO to MeOH. However, the stability of III is such that heating under reflux in degassed toluene in the presence of excess PPh<sub>3</sub> for 2 hours fails to promote a clean reductive elimination of methanol and leads to an intractable mixture of products.

We thank the New Zealand Universities Grants Committee for grants towards instrumental facilities and the award of a Postgraduate Scholarship to C.E.L.H.

# References

- 1 J.R. Norton, Accounts Chem. Res., 12 (1979) 139.
- 2 L. Abis, A. Sen and J. Halpern, J. Amer. Chem. Soc., 100 (1978) 2915.
- 3 K.L. Brown, G.R. Clark, C.E.L. Headford, K. Marsden and W.R. Roper, J. Amer. Chem. Soc., 101 (1979) 503.
- 4 B.E. Cavit, K.R. Grundy and W.R. Roper, J. Chem. Soc. Chem. Commun., (1972) 60; D.H. Farrar, K.R. Grundy, N.C. Payne, W.R. Roper and A. Walker, J. Amer. Chem. Soc., 101 (1979) 6577.
- 5 J. Tsuji, in I. Wender and P. Pino (Ed.), Organic Syntheses via Metal Carbonyls, Vol. 2, Wiley, New York, 1977, p. 595.

- 6 B.R. Francis, M.L.H. Green, T. Luong-thi and G.A. Moser, J. Chem. Soc. Dalton, (1976) 1339.
  7 G. Yagupsky, C.K. Brown and G. Wilkinson, J. Chem. Soc. (A), (1970) 1392.
- 8 J.W. Suggs, J. Amer. Chem. Soc., 100 (1978) 640; T.B. Rauchfuss, J. Amer. Chem. Soc., 101 (1979) 1045.
- 9 C.E.L. Headford and W.R. Roper, details to be published.
- J.R. Sweet and W.A.G. Graham, J. Organometal. Chem., 173 (1979) C9.
   C.P. Casey, M.A. Andrews, D.R. McAlister and J.E. Rinz, J. Amer. Chem. Soc., 102 (1980) 1927.
- 12 E.L. Muetterties and J. Stein, Chem. Rev., 79 (1979) 479.